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Automotive safety and Al
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Path prediction: Static; not on
path of SUV

Time to
Impact Speed Classification and Path
(seconds) (mph) Prediction? Vehicle and System Actions®
-99 351 - Vehicle begins to accelerate from 35 mph
in response to increased speed limit.
58 441 - Vehicle reaches 44 mph.
56 443 ffication: Vehicle—by Radar makes first detection of pedestrian
< radar (classified as vehicle) and estimates
Path_prediction: None; not on | Speed.
path of SUV
52 446 Classification: Other—by lidar Lidar detects unknown object. Object is

considered new, tracking history is
unavailable, and velocity cannot be
determined. ADS predicts object’s path as
static.

Classiﬁcatiy lidar
Path prediction: Sfafic; not on

path of SUV

Lidar classifies detected object as vehicle;
this is a changed classification of object
and without a tracking history. ADS
predicts object’s path as static.

Classification: Vehicle—by lidar
Path prediction: Left through
lane (next to SUV); not on path
of SUV

Lidar retains classification vehicle. Based
on tracking history and assigred-geoal ADS

predicts object’s path @s traveling i left

Classiﬁcatm@
between vehicle and other—by
lidar

Path prediction: alternates
between static and left through
lane; neither considered on path
of SUV

through lane.
Object's classification alternates several
times betw ehiefe-and-othe each

ADS predicts object's path as static. When
detected object’s classification remains
same, ADS predicts path as traveling in left
through lane.

Classificatiof: Bicycle—by lidar

Path prediction: Stafic, not on
path of SUV

Classification: Bicycle—by lidar
Path predictiof Left through >
lane (next to SUV); not on path

of SUV

Lidar retains bicycle classification; based
on tracking history and assigned goal, ADS
predicts bicycle’s path as traveling in left
through lane.

Source: National Transportation Safety Board. Collision between vehicle

controlled by developmental automated driving system and pedestrian Tempe,

Arizona march 18, 2018. 2019.
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Wider context of automotive safety standards

ISO 26262: Functional safety

‘Absence of unreasonable risk due to hazards caused by
malfunctioning behaviour of the electrical and/or electronic

systems”
Malfunctioning . Hazardous behaviour
b:haviloulr f)n veEicIe Iev\;ll )
Also addresses: ;
* Safety management o
(organisational and project-specific) L . aandom |
. P W R
®* Supporting processes \ SRusedby
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Safety challenges of automated driving functions

Impact of environment, task and system complexity

Scope & unpredictability

g of operational domain and Environment
(world)

critical events
Observations

(Evidence)

. . ' Environmental, System
Inaccuracies & noise in  taskand system |:> (Decision
complexity maker)

environmental sensors and

signal processing

Manifestations of uncertainty

Heuristics or machine

Burton, Simon, and Benjamin Herd. "Addressing uncertainty in the safety assurance of
machine-learning." Frontiers in Computer Science 5 (2023), Inspired by: Lovell, B. E.

learnin g techn |q ues with (1995). A Taxonomy of Types of Uncertainty. Portland State University.
unpredictable results €
Centre for
Source https:/Avww.cityscapes-dataset.com/examples Assuring
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Wider context of automotive safety standards

ISO 21448: Safety of the intended functionality (SOTIF)

‘Absence of unreasonable risk due to hazards resulting from
functional insufficiencies of the intended functionality or by
reasonably foreseeable misuse by road users”

Hazardous behaviour on vehicle
level

Triggerin : [ '
gg‘e‘ 9 activate .Func‘tl.onal Results in
conditions insufficiency

~ Insufficiencies of
| I the specification

— o Ve - - e

Inability to prevent or detect and
mitigate foreseeable indirect misuse

Performance
I insufficiencies

ssuring




Safety challenges of Al-based functions

Insufficiences of the specification

How to define a “complete” specification:
® Dealing with rare but critical events
® Distributional shift / changes in the environment over time

® Requires a detailed understanding of the operational domain and
technical system context

®  Which KPIs/Metrics can be used to measure the conformance to
the requirements?

® How to derive target values (validation targets) for these metrics?

Data as the specification:

® How to demonstrate coverage of the operational domain and
requirements?

® Does the (ground truth) data accurately represent the intended s Grdas
functionality for all possible scenarios? A i G
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Safety challenges of Al-based functions

Performance insufficiencies

Model uncertainty:

® Residual errors: due to bias and lack of generalization and
robustness: outputs sensitive to small changes in the inputs
and insufficiencies in training data

® Prediction uncertainty: Confidence scores not necessarily 4

‘“ Hr] R

indication of probability of correctness

'car: 0.91 %

g Car: 1.00 HPET==
.—_—‘" -

—

® Related to the concepts of task complexity, sample
complexity and model expressiveness

® How to systematically identify triggering conditions and
demonstrate a lack of “unknown triggering” conditions?
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ISO PAS 8800

Road vehicle-specific safety of E/E systems

ISO 21448 Road Vehicles
— Safety of the Intended
Functionality

ISO 26262 Road vehicles -

Functional safety

Safety concepts
extended for Al

v

ISO PAS 8800 Road Vehicles - Safety

and Artificial Intelligence

CAA
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Overview of ISO PAS 8800

Scope

® Extension of concepts from ISO 26262 and I1SO 21448

Process oriented standard based on a safety-lifecycle

Through-life assurance

. . . . Al system:
iny a few high-level requirements defined for each Pre- and postprocessing to reduce
lifecycle phase impact of Al errors, consideration of

®* Not specific to a particular Al/ML technology known insufficiencies in system
. requirements, assurance argument
®* However, most recommendations and

examples oriented towards machine learning Al model:

® Not specific to particular applications (e.g. Specification of safety related

(quantitative) properties,
Measures to reduce technical

Informative guidance to serve as an interpretation uncertainty, V&V, Safety Analysis
aid of the requirements and not necessarily to

automated driving)

promote specific solutions G
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Overview of ISO PAS 8800

Example scoping of the standards

Encompassing system
Traffic Jam Assist

1ISO 26262, 1ISO 21448,

' Understand Decide

Traffic Sign Classifier

ISO PAS 8800, —
ISO 26262,...

Source Trained ML Model

Al system

Consumer

ssuring



Overview of ISO PAS 8800

Al Safety lifecycle

Encompassing [

Hazard and risk analysis and Encompassing system  Encompassing system
system _J  safety requirement definition at integration, test and field monitoring
development encompassing system level assurance activities
N N N
— .’.. N, K N,
' | i
~z >
\\! 0’ N/
Refinement of Al .
. Evaluation of .
safety Selection of Al . . Operation and
. . confidence in the .
requirements approach and Al Al safety analysis —> continual
. assurance
allocated to the system design assurance
argument
Al system
A

Al system
development —

Data
specification and
collection for
training and test

Al system
verification and
validation

Insufficiencies or
changes in the
Insufficient confidence operating conditions
in the assurance detected during
argument operation

Requirements cannot be achieved
and must be renegotiated with the
encompassing system

A
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Overview of ISO PAS 8800

Derivation of safety requirements (Example)

Safety requirement Acceptance criteria

Correctly classify construction signs for an iven : : : :
Y fy image 9 Y9 < 10-94 missed detections/construction sign

Property Derived requirements

Generalization The TSC shall achieve a high recall rate for Recall 99.99%
construction signs

Metrics / Targets

Robustness The TSC should be robust against camera noise Adding noise perturbations characterized by LInorm <
0.001 on the image, shall introduce at most 0.01% false
negatives
The TSC should be robust against partial Occlusion of the traffic sign of 25% shall introduce at most
occlusion of or damage to the traffic sign 0.01% false negatives
Bias For each combination of possible weather and Recall of 99.99% shall be achieved for all equivalence
lighting conditions classes of weather and lighting
Prediction The confidence scores shall be representative of Maximum Calibration Error < 0.01
uncertainty the probability of failure
In addition, the limitations of the Al model and Al system must be characterized G

Centre for

so that these can be compensated for at the level of the encompassing system Nl




Overview of ISO PAS 8800

Design concepts

Al System

1

Trained ML Model |

>_

Can help to reduce the absolute performance requirements on the ML model by
compensating for residual errors




Overview of ISO PAS 8800

Data lifecycle and dataset safety analysis

Data collection

Safety requirements
on the ML system

ML system integration
and testing

during testing and
operation

mssssssssssssslsssssasssEsssEssEEEsEEEEEEEEEEEEREEnnnn damsssEssEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEfEEEsEEEEEEEs "
=
.

Dataset
maintenance

Dataset safet

Dataset EIEISIS . Dataset
design verification

Dataset
requirements

Dataset
validation

Dataset implementation:
Data acquisition/synthesis
Data augmentation
Data annotation

Dataset lifecycle

Common dataset errors

Lack of coverage of the input space

Lack of representation of safety-relevant edge cases
Distribution does not match the target input space

Dependencies on the data acquisition method (e.g. camera type,
geographic, temporal dependencies)

Data fidelity (e.g., sensor noise, accuracy of synthetic data)
Errors in the meta-data / labelling

Lack of independence between training and verification datasets

CAA
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Overview of ISO PAS 8800

Verification, Validation and Safety Analysis:

®* Limited transferability of software
verification techniques

® |ncreased reliance on statistical and
search-based testing

® Virtual testing vs. physical testing

® Safety analysis

* Adirect relationship between causes
of errors and their consequences may
be difficult to determine/disentangle.

* An evaluation of the effectiveness of
proposed measures is therefore
essential. G
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Overview of ISO PAS 8800

Safety assurance argument

A1.1: Al system definition:
{Assumptions on the input
space}

A1.3: Quality management
priciples have been applied during the
development of the {Al system} and its
assurance argument

* Develop an assurance argument
demonstrating that the Al safety

A1.2: Al system definition:
{Assumptions on the technical
system context}

G1: The safety requirements
allocated to the {Al system}

A1.4: Risk associated with
systematic and random hardware faults

within the defined context
M M €1.1: Al system definition: are fulfilled hiasbeen adequately addressed
reguilrements are rtuitiiie (e
the functionality}
A1.5: Development frameworks
ACP-S1 and tooling for the {Al system} do

C1.2: Al system definition:
{Safety requirements allo-
cated to the Al system}

not impact Al safety

$1: Functional insufficiencies that
could violate safety requirements
have been prevented, minimised or
mitigated during specification,
design and operation

C1.3: Safety analysis: {Causes
of functional insufficiencies,
safety analysis}

* As a contribution to the safety
assurance argument of the

encompassing system

Continually re-evaluated and
updated during operation

G2: Potential insufficiencies of the
specification of the {Al system} have
been addressed

G4: Functional insufficiencies have
been adressed in the design of the
{Al system}

FigB.2-2

FigB.2-6

G3: Training and verification
datasets are sufficient to achieve
and demonstrate Al safety of the

{Al system}

G6: Residual and emerging functional
insufficiencies of the {Al system} are
detected during operation and
mitigation measures defind

FigB.2-8

G5: Fulfillment of the safety
requirements on the {Al system}
has been demonstrated

FigB.2-3

Fig B2-7

G
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Wider context of automotive safety standards

A complex evolving landscape of standards and regulation

Laws and Sector- UN ECE WP.29 Technology- US EO on Safe, Secure,
regulations specific GRVA (ks specific Trustworthy Al EUAI Act
L J
Aligned with or directly reference A
international standards Al standards
support the
Road vehicl ifi ISO TS 23792 Intelligent transport systems — implementation of
ofa vef IEc/Ee-speCI ic ADS'SpeCifiC Motorway chauffeur systems laws and regu|ations
— )
safety o systems standards ISO/FDIS 23374 Intelligent transport systems —
Automated valet parking systems (AVPS)
: SAE 33016 Taxonomy and Definitions for Terms
ISO 26262 Road ISO 21448 Road Req‘;gebrgems Related to ADS for On-Road Motor Vehicles
vehicles - Functional Vehicles - SafetY Ofthe [aalell=laglslalv=le Ml SAE J3316 — Cooperative driving automation (CDA)
safety Intended Functionality according to Features
the principles BSI PAS 1883 ODD taxonomy for an ADS -
Safety concepts of safety specification
extended for Al standards |IEEE P2846 Standard for Assumptions in Safety-
* related models for ADS
ISO TS 5083 Road vehicles — Safety for ADS -
design, verification and validation

EU Al Act calls for
the creation of Al
standards

ISO PAS 8800 Road Vehicles -
Safety and Artificial Intelligence

May make use of application-agnostic guidance during implementation
ISO/IEC TS 25058 “ SQuaRE - Gu

Application-agnostic Al/ML ISO/IEC 22989 Atrtificial intelligence ISO/IEC TR 5469 Artificial intelligence : : :
concepts concepts and definitions Functional safety and Al systems vew quahty SvellEiion o ariie
intelligence (Al) systems
ISO/IEC TS 4213 Assessment of machine ISO/IEC TR 24029 — Assessment of the ISO/IEC TR 24027 Bias in Al systems and
learning classification performance robustness of neural networks Al aided decision making
IEEE P3129 Standard for Robustness

IEEE P3396 Recommended Practice for |IEEE P2976 - Standard for XAl —
eXplainable Al- for Achieving Clarity and Testing and Evaluation Al-based Image
Recognition Service

A 4

Defining and Evaluating Al Risk, Safety,
Trustworthiness, and Responsibility Interoperability of Al Systems Design

%
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Safety under uncertainty

Principles of effective assurance arguments*

* Clear definition of the safety claim to be demonstrated
€ How to formulate safety requirements as measurable properties of ML models?

* Assurance driven workflow for continually/incrementally capturing evidence during
development and operation

& Covered by ISO PAS 8800 and other standards

° Aéguments based on rigorous models of the system and its context
@ Opague models/ML explainability, incomplete definition of the input space?

* Use of evidence and arguments that can be easily refuted or believed

@ Can we trust our ML metrics to provide us with an accurate
evaluation of safety risk?

ssuring

*With thanks to Natarajan Shankar, SRI: Keynote SAFECOMP 2023



Safety under uncertainty

Ongoing research

: : Estimated safety Actual safety
Many metrics are proposed for evaluating the #j € 11 AG) A PGMG))Y D ienatncimey Popp(i)
safety of ML-based functions, do they really provide #(j e 1:AG)) W Yicram Popp(d)

a realistic estimation of the actual safety risk?

Assurance Uncertainty

1. Collect primary evidence to

directly support the safety claim | [F—

including uncertainty | :
2. Identify evidence to support or . E>

refute the validity of the primary I

evidence e

For more details see: Herd, Benjamin, and Simon Burton. "Can you trust your

3. Adjust estimates of safety risk EL:“dE‘#yg i“Si;‘é%‘;f:g?‘éﬁ%}eﬁ{ﬂ?&?ﬁ51’55295;‘53;‘8&";“”L
based on uncertainty in the PPliec ComPpLting, PP 18751566, 2024
measu rement gzgal;ler{gr

Autonomy



Assurance uncertainty

Uncertai Nty aware Safety arguments
e

A1
G1 Camera is operating within its ——— Combined statistical and synthetic testing
specific operating range with 80 i i 0
Recall rate 2 98% ) nominal noise, weather conditions ! Ad_] . EXpeCted value 99.2%
and < 15 second order uncertanty Sians have besn comest detacted & | di. 959 bl 9
<1% signs have been correctly detecte:
within the original image. i A d: 95% credible 28.0%
| .
w0 : interval lower bound
A I
| .
> 20 ! 2nd Order Uncertainty  1.2%
1
A 1
$1 0 1
Demonstration of claim via a combination 0.96 0.97 0.98 0.99 1.00
of statistical testing and simulation B
o G2 G3 ) M
" i 3 The lower bound of the 95% confidence ;I;]T:r:g?’z:l L:g:rtlgs(t)fnt:silgtss f/rootr::nﬂdence *
» 3 3 ANy interval on the test results from search based testing using synthetic * /
i ! randomly selected real-world images is 2 98% N : .
B : ! " o images is 2 98% with a second order o
. ‘ 3 Moond order uncertainty <1%. uncertainty <1%. P T Y
Sn1 sn2
Test results: . .
— Passed: 39800 mation j==———Cx
Failed: 200
- For more details see: Herd, Benjamin, and Simon Burton.
"Can you trust your ML metrics? Using Subjective Logic to
y Y 9 ) 9
determine the true contribution of ML metrics for safety."
” In Proceedings of the 39th ACM/SIGAPP Symposium on C‘
o g S — Applied Computing, pp. 1579-1586. 2024.
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Conclusions and next steps

Research: Foundations of convincing Al safety arguments

Convincing arguments for Al safety require:

* A precise definition of the properties being measured and their relationship to
system requirements

 Safety requirements - Measurable properties
®* Evidence beyond simple metrics calculated based on arbitrary test data

* Rigorous approach to statistical reasoning based on quantitative evidence
®* Reducing uncertainty in the integrity and validity of evidence

* Advancing state-of-the-art in (virtual) testing of Al-based systems

* Scaling formal verification of well-bounded properties such as robustness

* High integrity safety measures at the architectural level to mitigate against
residual errors in the model

* Balancing safety risk against utility (overly restrictive safety measures)

ssuring



Conclusions

Summary

®* Initial standards define Al safety lifecycles and iterative approaches to collecting and
evaluating evidence

®* The ability to provide a convincing argument for the safety of Al-based autonomy is
iInherently linked to the complexity of the environment, the task and the resulting
models.

* Acknowledgement and management of the resulting uncertainties is required to
make a convincing safety argument.

®* The greater the complexity of the environment, task and system (Al models), the
harder it is to trust the evidence, the assumptions and the argument structure itself.

®* This may lead to the need for inherently resilient (and anti-fragile) systems, which
are not fully assured in a classical sense during development.

A
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Thank you for your attention, any questions?

www.york.ac.uk/assuring-autonomy

assuring-autonomy@york.ac.uk
Centre for Assuring Autonomy Linkedln

Foundation


http://www.york.ac.uk/assuring-autonomy
mailto:assuring-autonomy@york.ac.uk
https://www.linkedin.com/company/assuring-autonomy/

